Những câu hỏi liên quan
Nguyễn Lâm Quế Trâm
Xem chi tiết
vo phi hung
21 tháng 5 2018 lúc 21:27

a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)

\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)

\(=m^2-2m+1+6m+7\)

\(=m^2+4m+8\)

\(=m^2+2.m.2+2^2+4\)

\(=\left(m+2\right)^2+4>0,\forall m\)

Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m 

Bình luận (0)
Kim Huệ Lê
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 5 2021 lúc 16:08

\(\Delta'=\left(m-1\right)^2+m^2+1>0\) ;\(\forall m\Rightarrow\) phương trình luôn có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(2m+1\right)\\x_1x_2=-m^2-1\end{matrix}\right.\)

Đặt \(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}\)

\(A=\dfrac{2m+1}{m^2+1}\ge0\Leftrightarrow2m+1\ge0\Rightarrow m\ge-\dfrac{1}{2}\)

Bình luận (0)
Hoàng Nguyệt
Xem chi tiết
Akai Haruma
11 tháng 5 2021 lúc 22:34

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)

Bình luận (0)
Dream Boy
Xem chi tiết
๖Fly༉Donutღღ
15 tháng 2 2019 lúc 19:42

Mobilegends nữa ko : (((((( 32k vàng rồi nha 

Bài này t có thể xài \(\Delta\)hay \(\Delta'\)đều được nhé vì bài này hệ số b chia hết cho 2 nên xài \(\Delta'\)đi cho nó easy hơn 1 tí >: 

Công thức: \(\Delta'=b'^2-ac\) chứ xài \(\Delta=b^2-4ac\) nó dài hơn tí 

\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-4\right).1\)

\(\Delta'=m^2+2m+1-2m+4\)

\(\Delta'=m^2+5>0\) ( luôn đúng ) 

P/s câu a chỉ cần chứng minh pt đó lớn hơn 0 sẽ có 2 nghiệm phân biệt 

b) \(x_1;x_2\) là 2 nghiệm phân biệt của phương trình ( gt )

Xài hệ thức vi - ét =)

\(3\left(x_1+x_2\right)=5x_1x_2\)\(\Leftrightarrow6\left(m+1\right)=5\left(2m-4\right)\)

Tới đây easy rồi giải nốt vs kết luận đi nha :))))

Bình luận (0)
Dream Boy
15 tháng 2 2019 lúc 19:45

ừm tối làm trận xếp hạng rồi nghỉ vô naruto online đi S930 nha 

Đợi t làm vào đã rồi chơi tí học tiếp

Bình luận (0)
nguyễn thị lan hương
Xem chi tiết
tth_new
23 tháng 2 2019 lúc 8:33

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

Bình luận (0)
nguyễn thị lan hương
23 tháng 2 2019 lúc 9:16

ý b kìa ý a mình biết rồi

Bình luận (0)
cao van duc
23 tháng 2 2019 lúc 15:26

b,ta có x1.x2=\(\frac{c}{a}=\frac{m-3}{m+1}\)>0=>\(\orbr{\begin{cases}m< -1\\m>3\end{cases}}\)

theo viet ta có:\(x1+x2=\frac{-b}{a}=\frac{2\left(m-1\right)}{m+1}\)

                      mà x1=2x2

=>\(\hept{\begin{cases}x1=\frac{4\left(m-1\right)}{3\left(m+3\right)}\\x2=\frac{2\left(m-1\right)}{3\left(m+1\right)}\end{cases}}\)

thay vào P=x1.x2=c/a=\(\frac{m-3}{m+1}\)

=>tìm m đối chiếu đk 

Bình luận (0)
Phạm Tuân
Xem chi tiết
Maneki Neko
Xem chi tiết
tran thi kim phuong
Xem chi tiết
Nguyễn Minh Đăng
4 tháng 5 2021 lúc 22:44

Ta có:

\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt với mọi GT của m

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)

Thay vào A ta được:

\(A=x_1^2+x_2^2-3x_1x_2\)

\(A=\left(x_1+x_2\right)^2-5x_1x_2\)

\(A=\left(-m-2\right)^2-5\left(m-1\right)\)

\(A=m^2+4m+4-5m+5=m^2-m+9\)

\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)

\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)

Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)

Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
4 tháng 5 2021 lúc 22:48

Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2

= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5

= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m

Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4

Bình luận (0)
 Khách vãng lai đã xóa
chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 20:36

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Bình luận (0)